Cardinalidad

Notación

En esta hoja, si X e Y son conjuntos equipotentes, escribimos $X \sim Y$. Además,

$$I_n = \{1, 2, \dots, n\}$$

- 1. Sean X,Y conjuntos con $X\subseteq Y$ y sea $f:X\to Y$ una función sobreyectiva. Demostrar que existe una función $F:X\to Y$ biyectiva, esto es, que X e Y son conjuntos equipotentes.
- 2. (Teorema de Cantor-Schröder-Berstein II) Sean X, Y conjuntos y sean

$$f: X \to Y;$$
 $g: Y \to X$

ambas sobreyectivas. Demostrar que X e Y son equipotentes.

- 3. Sean X, X', Y, Y' conjuntos con $X \sim Y$ y $X' \sim Y'$. Demostrar que:
 - a) $X \times X' \sim Y \times Y'$.
 - b) Si $X \cap Y = \emptyset$, entonces $X \times Y \sim X \times \{0, 1\}$.
 - c) Si $X \cap X' = \emptyset$ e $Y \cap Y' = \emptyset$, entonces $X \cup X' \sim Y \cup Y'$.
- 4. Demostrar que si X_1, X_2, \dots, X_n son conjunto finitos, entonces también lo son:

$$a) \bigcup_{k=1}^{n} A_k$$

$$b) \bigcap_{k=1}^{n} A_k$$

c)
$$A_1 \times \cdots \times A_n$$

- 5. Probar que si $X \times Y$ es un conjunto finito, entonces X e Y también son finitos.
- 6. Para cada $m \in \mathbb{N}$, $m \ge 1$, definimos el conjunto

$$X_m = \{ q \in \mathbb{Q} : 0 \le q \le 1 \text{ y } mq \in \mathbb{Z} \}.$$

Probar que X_m es finito y calcular su cardinal.

- 7. Demostrar que si el producto cartesiano $X_1 \times X_2 \times \cdots \times X_n$ es finito para cierto $n \in \mathbb{N}$, entonces cada componente, X_1, X_2, \cdots, X_n es finita.
- 8. Sea $f: I_n \to \mathbb{N}$ una función. Demostrar que im(f) es un conjunto finito.
- 9. (Generalización del ejercicio anterior) Sea X un conjunto finito no vacío y sea Y otro conjunto no vacío. Consideramos una función $f:X\to Y$. Demostrar que im(f) es un conjunto finito.
- 10. Sea X un conjunto no vacío y sea $f: X \to \mathbb{N}$ una función sobreyectiva. Demostrar que X es infinito. Dar un ejemplo en el que X cumpla las condiciones anteriores y sea numerable; y otro en el que no sea numerable.
- 11. (Propiedades básicas de conjuntos infinito-numerables)

Sea X un conjunto infinito-numerable. Demostrar que:

- a) Si $Y \subseteq X$ es finito, entonces X Y es infinito-numerable.
- b) Si $Y \subseteq X$ es infinito, entonces Y es infinito-numerable.
- c) Si Z es un conjunto finito, entonces
 - 1) $X \cup Z$ es infinito-numerable.

- 2) $X \cap Z$ es finito.
- 3) $X \times Z$ es infinito-numerable.
- d) Si W es un conjunto infinito-numerable, entonces
 - 1) $X \cup W$ es infinito-numerable.
 - 2) $X \times W$ es infinito-numerable.
- 12. ¿Es el conjunto de los números irracionales numerable?
- 13. (Propiedades de familias finitas de conjuntos infinito-numerables)

Sean X_1, \ldots, X_n conjuntos infinito-numerables. Demostrar que:

- a) $\bigcup_{k=1}^{n} X_k$ es infinito-numerable.
- b) $X_1 \times \cdots \times X_n$ es infinito-numerable.
- 14. (Propiedades de familias numerables de conjuntos infinito-numerables)

Sean $\{X_n\}_{n\in\mathbb{N}}$ una familia numerable de conjuntos infinito-numerables. Demostrar que:

- a) $\bigcup_{n\in\mathbb{N}} X_n$ es infinito-numerable.
- b) $\prod_{n\in\mathbb{N}} X_n$ es infinito-numerable.
- 15. ¿Es infinito-numerable la unión infinito-numerable de conjuntos finitos? ¿Y el producto cartesiano?
- 16. Sea X un conjunto infinito de cardinal no numerable y sea $Y \subseteq X$ un subconjunto numerable. ¿Qué cardinalidad puede tener X Y?
- 17. Calcular el cardinal de los siguientes conjuntos:
 - $a) \mathbb{N} \times \mathbb{Q}$

 $c) \mathcal{P}(\mathbb{R})$

 $e) \mathbb{R} - \mathbb{N}$

 $b) \mathbb{R} \times \mathbb{Q}$

 $d) \mathbb{R}^2$

- $f) \mathbb{R}^n$
- 18. Calcular el cardinal de los siguientes conjuntos:
 - a) $R = \{\text{Raíces reales de polinomios con coeficientes reales}\}$
 - b) (Reales algebraicos)

 $\overline{\mathbb{Q}} = \{ \text{Raíces reales de polinomios con coeficientes racionales} \}$

- c) El conjunto de todos los subconjuntos de $\mathbb N$ que tienen exactamente dos elementos.
- d) El conjunto de los reales en [0,1) en cuyo desarrollo decimal no aparece el 9.