Relaciones de equivalencia

1. Sea X un conjunto no vacío y \mathcal{R} una relación de equivalencia definida en X. Dado $x_0 \in X$, demostrar que para todo $x_1, x_2 \in X$ se tiene que

$$x_1, x_2 \in [x_0] \Rightarrow x_1 \mathcal{R} x_2.$$

2. Definimos en $\mathbb Z$ la relación

$$m\mathcal{R}n \iff |m| = |n|.$$

- a) Demostrar que \mathcal{R} es de equivalencia.
- b) Hallar las clases de equivalencia.
- c) Determinar el conjunto cociente \mathbb{Z}/\mathcal{R} .
- d) Hallar una función biyectiva entre \mathbb{Z}/\mathcal{R} y \mathbb{N} , demostrando que está bien definida.
- 3. Definimos en $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ la relación

$$m\mathcal{R}n \iff \sqrt{m} - \sqrt{n} \in \mathbb{Z}.$$

- a) Demostrar que \mathcal{R} es de equivalencia.
- b) Decidir si $4 \in [9]$.
- c) Hallar [16].
- 4. Definimos en \mathbb{Q} la relación

$$x\mathcal{R}y \iff x-y \in \mathbb{Z}.$$

- a) Demostrar que \mathcal{R} es de equivalencia.
- b) Decidir si $\frac{9}{4} \in \left[\frac{1}{2}\right]$.
- c) Hallar [1] y $\left\lceil \frac{2}{3} \right\rceil$.
- 5. Definimos en \mathbb{R}^2 la relación

$$(x,y)\mathcal{R}(u,v) \iff x^2 + y^2 = u^2 + v^2.$$

- a) Demostrar que \mathcal{R} es de equivalencia.
- b) Hallar [(0,0)] y [(1,0)].
- c) Hallar $[(x_0, y_0)]$ para $(x_0, y_0) \in \mathbb{R}^2$, distinto del origen y dar una descripción geométrica.
- d) Comprobar que cualquier clase de equivalencia se puede escribir con un representante de la forma [(k,0)] con $k \in \mathbb{R}, k \geq 0$.
- e) Describir el conjunto cociente.
- 6. Definimos en $\mathbb{Z}\times\mathbb{Z}$ la relación:

$$(m,n)\mathcal{R}(p,q) \iff mq = np.$$

¿Es una relación de equivalencia?

7. (Construcción de $\mathbb Z$ a partir de $\mathbb N$) Definimos en $\mathbb N \times \mathbb N$

$$(m,n)\mathcal{R}(p,q) \iff m+q=n+p.$$

- a) Demostrar que es una relación de equivalencia.
- b) Hallar las clases de equivalencia de los elementos [(1,0)] y [(2,1)].
- c) Hallar la clase de equivalencia de un elemento genérico [(m,n)].
- 8. Definimos la siguiente función:

$$f: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}; \quad f([m], [n]) = [m+n].$$

Demostrar que está bien definida.

9. Sean $m, n \in \mathbb{N}$, con $m, n \geq 2$ y m|n (esto es que m es divisor de n). Consideramos la función

$$f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}; \quad f([x]_n) = [x]_m;$$

donde $[\cdot]_n$ representa la clase en $\mathbb{Z}/n\mathbb{Z}$ y $[\cdot]_m$, la clase en $\mathbb{Z}/m\mathbb{Z}$.

Demostrar que la función está bien definida.

- 10. (*) Sea X un conjunto no vacío y sea $\{X_1, \ldots, X_n\}$ una partición (finita) de X. Demostrar que esta partición induce relación de equivalencia \mathcal{R} en X y que esta es única.
- 11. (*) Sean X, Y conjuntos no vacíos, \mathcal{R}_X una relación de equivalencia en X y sea $f: X \to Y$ una función. Demostrar que \mathcal{R}_X induce una relación de equivalencia \mathcal{R}_Y , de modo que la imagen de una clase de equivalencia en X es una clase de equivalencia en Y.