Conjuntos y subconjuntos

- 1. Describir los elementos de los siguientes conjuntos:

 - $E = \{x \in \mathbb{N} : \exists y \in \mathbb{N} \text{ tal que } y+1 < x\}.$ $E = \{x \in \mathbb{N} : \exists y \in \mathbb{N} \text{ tal que } y+1 < x\}.$ $E = \{x \in \mathbb{N} : \exists x \in \mathbb{N} : \exists x \in \mathbb{N} \text{ tal que } x \in \mathbb{N}\}.$ $E = \{x \in \mathbb{N} : \exists x \in \mathbb{N} \text{ tal que } x \in \mathbb{N}\}.$

c) $C = \{x \in \mathbb{R} : x < 3\}$

g) $G = \{x \in \mathbb{R} : \exists y \in \mathbb{R} \text{ tal que } x = y^2\}.$

d) $D = \{x \in \mathbb{N} : x < 3\}.$

- h) $H = \{x \in \mathbb{R} : \exists y \in \mathbb{N} \text{ tal que } x = y^2\}.$
- 2. Consideramos $n \in \mathbb{N}$, $n \geq 2$, fijo y definimos el subconjunto de \mathbb{Z} :

$$n\mathbb{Z} = \{kn : k \in \mathbb{Z}\},\$$

esto es, $n\mathbb{Z}$ es el conjunto de todos los múltiplos enteros de n.

- a) Describir los conjuntos $3\mathbb{Z}$ y $6\mathbb{Z}$.
- b) Demostrar que $6\mathbb{Z} \subseteq 3\mathbb{Z}$. ¿Por qué ocurre esto?
- c) Demostrar que si m es un múltiplo de n, se tiene que $m\mathbb{Z} \subseteq n\mathbb{Z}$.
- 3. Dado el conjunto $A = \{0, -1, 1\}$, calcular $\mathcal{P}(A)$.
- 4. Dado el conjunto $B = \{ \bullet, \triangle, \partial \}$, calcular $\mathcal{P}(B)$.
- 5. Calcular $\mathcal{P}(\mathcal{P}(\varnothing))$.
- 6. Sean $S = \{a, b, c, d\}, T = \{1, 2, 3\}$ y $U = \{b, 2\}$. ¿Cuáles de las siguientes expresiones son correctas?
 - $a) \{a\} \in S$
- g) $a, c, 2, 3 \subseteq S \cup T$
- $m) \{1,3\} \in \mathcal{P}(T)$

b) $a \in S$

- h) $U \subseteq S \cup T$
- $n) \{\emptyset\} \in \mathcal{P}(T)$

 $c) \{a,c\} \subseteq S$

 $e) \{a\} \in \mathcal{P}(S)$

- i) $b \in S \cap T$
- \tilde{n}) $\varnothing \in \mathcal{P}(T)$

- $d) \varnothing \in S$
- $j) \{b\} \subseteq S \cap U$
- $o) \varnothing \subseteq \mathcal{P}(T)$
- f) $\{\{a\}, \{a,b\}\} \in \mathcal{P}(S)$ l) $T \supseteq \{1,3\}$
- $k) \{1,3\} \in T$
- $p) \{\emptyset\} \subseteq \mathcal{P}(T)$
- 7. Sean $S = \{1, 2\}, T = \{-1, 1\}, U = \{a\}, V = \{a, b\}$. Calcular:
 - $a) (S \cap T) \cup U$

 $e) (S \times V) \setminus (T \times U)$

b) $S \setminus T$

- d) $(S \setminus T) \times (V \setminus U)$
- 8. Demostrar que se cumple o dar un contraejemplo de la siguiente igualdad:

$$\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$$