Resumen: Conjuntos y Subconjuntos

1. ¿Qué es un conjunto?

Un conjunto es una colección bien definida de elementos.

Formas de definición:

• Extensión: $A = \{1, 2, 3\}$

• Comprensión: $P = \{x \in \mathbb{N} : x \text{ par}\}$

• Lenguaje natural: "Los números pares."

El **conjunto vacío** se denota por \emptyset .

2. Pertenencia y contenido

• $a \in A$: "a pertenece a A"

• $B \subseteq A$: "B es subconjunto de A"

 \in relaciona elemento-conjunto \subseteq relaciona subconjunto-conjunto.

3. Subconjuntos

 $B \subseteq A$ si todos los elementos de B están en A. **Tipos:**

• Triviales: $\emptyset \subseteq A, A \subseteq A$

• Propios: $B \subsetneq A$

4. Igualdad de conjuntos

A=B si $A\subseteq B$ y $B\subseteq A$ (misma colección de elementos).

5. Conjunto potencia

El conjunto de todos los subconjuntos de A se denota $\mathcal{P}(A)$.

6. Operaciones

Sean $A, B \subseteq U$:

• Unión: $A \cup B = \{x \in U : x \in A \text{ o } x \in B\}$

• Intersección: $A \cap B = \{x \in U : x \in A \ y \ x \in B\}$

• Diferencia: $A - B = \{x \in U : x \in A \ y \ x \notin B\}$

• Complementario: $A^c = \{x \in U : x \notin A\}$

Leyes más útiles:

• De Morgan:

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

7. Producto cartesiano

 $A \times B = \{(a, b) : a \in A, b \in B\}$ Aplicaciones:

• Funciones: $f: A \to B \subseteq A \times B$

• Espacios: $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$